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Abstract. We investigate a crossover behaviour of the conservative and non-conservative
growing models in which the surface relaxation is restricted by the given value of threshold,H .
The time dependence of the mean step height, which scales ass(H, t) ∼ Hg(t/H 2), is found
to be responsible for the observed crossover behaviour of the surface width. A modified scaling
ansatz is also proposed to describe the crossover behaviour in the growing models of this kind.

The kinetic roughening of a growing surface has attracted considerable interest during the
past decade ([1] and references therein). A stochastically growing surface by the deposition
of particles on an initially flat surface exhibits self-affine fractal structure and non-trivial
scaling behaviour. Such scaling behaviour of the self-affine surface has been successfully
described by the following dynamic scaling form for the surface width,W , developing in
(1 + 1)-dimensional space [2]:

W(L, t) ≡
[〈

1

L

∑
(hi − 〈h〉)2

〉]1/2

∼ Lαf (t/Lz) (1)

wherehi , L and t are the height of substrate sitei, the lateral system size and the growth
time, respectively. The symbol〈· · ·〉 stands for the statistical average. The scaling function
f has the asymptotic behaviourf (x) ∼ xβ , for x � 1, andf (x) ∼ constant forx � 1.
As a result, for short times (t < ts), the surface widthW depends only on time with the
growth exponentβ; W(t) ∼ tβ , while for t > ts, the saturated width depends only on
the lateral system size with the roughness exponentα; W(L) ∼ Lα. The saturation time
scales asts ∼ Lz with the dynamic exponentz = α/β. These exponents characterize the
kinetic roughening of the growing surface. One may address three different classes from
the continuum equation proposed by Kadar, Parisi and Zhang (KPZ) [3];

∂h(x, t)

∂t
= ν∇2h(x, t) + λ(∇h)2 + η(x, t) (2)

where the surface heighth(x, t) is a function oft and substrate coordinatesx, andη(x, t)

is the uncorrelated white noise. The caseν = λ = 0 gives the random deposition (β = 1
2;

RD class). Forν 6= 0 andλ = 0, it is the linear equation of the Edwards–Wilkinson model
(β = 1

4, α = 1
2 and z = 2; EW class), and forν 6= 0 andλ 6= 0, this nonlinear equation

represents theKPZ class withβ = 1
3, α = 1

2 andz = 3
2.
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Some years ago Nagatani [4] introduced a threshold to the Edwards–Wilkinson [5]
model to investigate the crossover behaviour from the random deposition (theRD class) to the
deposition with surface diffusion (theEW class). In this restricted Edwards–Wilkinson (REW)
model, the surface diffusion processes occur at the sites only where the step height between
nearest-neighbour columns is greater than the given value of thresholdH . Asymptotically,
the surface width scales ast1/2 in the limit of H → ∞, but scales ast1/4 in the limit of
H → 0. Therefore a crossover phenomenon is expected to be observed for a finite value
of H , and a new characteristic time such as a crossover timetc is also expected to appear
in addition to the usual saturation timets. Nagatani (see [4]) reported that such a crossover
time scales astc ∼ Hφ with 1/φ = 0.58 for theREW model.

In this paper we reconsider theREW as a conservative growth, in which a crossover
from theRD class to theEW class occurs. We also revisit the restricted solid-on-solid (RSOS)
model [6] as a non-conservative growth, especially with higher restriction parameters rather
than one, in which the crossover behaviour from theRD class to theKPZ class is expected
to occur. In order to study the crossover behaviour of these restricted models, we apply the
following dynamic rules for a randomly chosen site;

hi → hi + 1 if hi − hi±1 < H

hi → hi otherwise forRSOS (3)

hi±1 → hi±1 + 1 otherwise forREW.

We then obtain the surface width by numerical simulations. All numerical results in our
calculations are averaged over 1000 different configurations by varying the system sizesL

and the values of thresholdH . Time is counted byt = N/L whereN is the total number of
attempts to deposit particles. A periodic boundary condition is also imposed in simulations.

We first consider the local state of a surface when a thresholdH is introduced to the
growing processes. The surface diffusion process in theREW model or desorption process
in theRSOSmodel could not occur as long as the step height difference between the nearest-
neighbour columns is smaller than the given value ofH . Thus the random filling processes
continue to develop until a statistically intrinsic length is comparable to that of the threshold.
We can see this by investigating the time evolution of mean step height defined by

s(H, t) ≡ 〈|(hi(t) − hi−1(t)|〉 (4)

which is also the nearest-neighbour height–height correlation function. The dynamical
scaling law (1) only holds ifs(H, t) is constant.

Figure 1 clearly shows that the mean step height,s(t), increases as a power law, and
saturates to anL independent value. The value of thresholdH is thus a natural unit for
measuring the mean step height. Associated with it is also the characteristic saturation
time, tc, which turns out to be the crossover time as will be seen below. This can be
understood by mapping the dynamics of a step height to a one-dimensional random walk
with two symmetric reflecting boundaries located at±H site apart from the origin. Since
the walker’s first visit to the boundary means the occurrence of diffusion or desorption of
a particle, one can identify the first passage time as the crossover timetc and thus easily
obtain tc ∼ H 2 from the well known random walk results. After a long run, the average
distance of the walker, i.e. the mean step height, enters the steady state ass(H, ∞) ∼ H/2.
Evidently there is noL dependence oftc. Hence we arrive at the scaling ansatz for the
mean step height as follows:

s(H, t) ∼ Hγ g(t/Hφ) (5)

where the scaling functiong behaves asymptoticallyg(x) → x1/2 for x � 1 and
g(x) → constant forx � 1. The insets of figure 1 confirm that all curves both of the
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Figure 1. Plots of the mean step height against time withH = 4, 8, 16, 32, 64 andL = 1000, in
log–log scale for theREW model (a) and theRSOSmodel (b). The insets show the data collapse
according to the scaling equation (5), withγ = 1.0 andφ = 2.0.

Figure 2. Plots of the surface width against time withH = 4, 8, 16, 32, 64 andL = 1000, in
log–log scale for theREW model (a) and theRSOSmodel (b). The insets show the data collapse
with W/H versust/H 2.

REW (figure 1(a)) and theRSOS (figure 1(b)) are well collapsed to a single curve by the
above scaling form withγ = 1.0 andφ = 2.0.

Figure 2 shows the typical crossover behaviour of the surface width,W(t), for the
various values of threshold. As shown in the insets, all curves are excellently collapsed to
a single curve with the slope, i.e. the growing exponentβ, changing from1

2 to 1
4 for the

REW (figure 2(a)) and from 1
2 to 1

3 for the RSOS(figure 2(b)) at the crossover timetc ∼ H 2,
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Figure 3. Log–log plots of the surface width withH = 4, 8, 16 for theREW model (a), and with
H = 8, 16, 32 for theRSOSmodel (b). The system sizes areL = 64 (+ symbol) andL = 128
(full circle) for both cases. The insets show the data collapse according to the modified scaling
equation (6), with (a) α = 1

2 , z = 2 and (b) α = 1
2 , z = 3

2 .

which is nothing but the characteristic time of the mean step height. Thus the power-law
time dependence ofs(t, H) is responsible for the observed crossover behaviour of this kind
of growing model. We also would like to point out that the value of 1/φ = 0.58 in [4]
should be read withφ = 2.0 as obtained in our scaling form.

We also investigate the long-time behaviour of the surface width for the time aftertc.
Our simulations show that the saturation time scales asts ∼ H 2Lz and the saturated surface
width asWs ∼ HLα, for arbitrary values ofL and H . We thus plot the rescaled surface
width, W/Ws, against the rescaled time,t/ts, in the log–log scale as shown in the insets
of figure 3. The results show an excellent data collapse with exponents of theEW class
(figure 3(a)) and those of theKPZ class (figure 3(b)). Its scaling form is given by the
conventional scaling law as expected whens(H, t) is constant. The scaling form unified
by equations (1) and (5), which can describe the dependence of the surface width on the
threshold, the system size and time, is proposed to be

W(H, L, t) ∼ s(H, t)Lαf (s−2(H, t)t/Lz) . (6)

This implies that the surface width behaves asW ∼ t1/2 for t < tc, W ∼ H 1−2βtβ for
tc < t < ts, andW ∼ HLα for ts < t , which is consistent with all simulation results. This
type of scaling form is not unfamiliar. Schroederet al [7] recently introduced a modified
scaling law to account for an anomalous scaling behaviour arising in the Wolf–Villian [8]
model. They observed the time dependence of the mean step height and introduced a
modified scaling relation for the height–height correlation function. The direct integration
of their scaling relation easily gives the above equation (6). This modified scaling relation
successfully explains the complex scaling behaviour ofW(L, H, t) in all time regimes for
the various system sizes and thresholds. Recently, Nattermann and Tang [9] studied the
continuum equation (2) in the weak-coupling regime and discussed the crossover scaling of
the surface width. Their analytic description could be followed by providing that the square
of the restriction parameter in our model is reciprocal to the diffusion constant.
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In summary, we have studied the crossover behaviour of a conservative and non-
conservative growing surface in the presence of a threshold. The time dependence of the
mean step heights(H, t) is found to be responsible for the observed crossover behaviour.
We have examined theREW and RSOS models as an example of a conservative and non-
conservative growing surface, respectively. In both models, the mean step height grows
as t1/2 and then saturates toH/2, and scales ass(H, t) ∼ Hg(t/H 2). There also exist
two characteristic timestc ∼ H 2 and ts ∼ Lz. The crossover timetc turns out to be the
saturation time of the mean step height. We also propose a modified scaling relation to
describe a complex scaling behaviour ofW(L, H, t) in all time regimes for the various
system sizes and thresholds. In principle, equation (6) can be applied to a model if an
existing crossover is induced by the time dependence of the mean step height. Especially
when the crossover time is close to the saturation time such asts ∼ tc, one cannot then
obtain a correct behaviour of the surface width by using a conventional scaling law, since it
begins to saturate before the crossover occurs. In such a case, our modified scaling ansatz
makes it possible to determine the correct universality class of the system. The applicability
to other growth models, in which the crossover occurs by non-trivial dynamics rather than
random dynamics, is now under investigation and shall be reported elsewhere.
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